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Problem 1:

(a) The idea of a power prior is to incorporate historical data into the choice of the prior distri-
bution of # in the current study. To begin, let my(#|-) denote the initial choice of the prior
distribution for # before any historical data, denoted Dy, is observed. Then, the power prior
distribution for # is an 'update’ of the initial prior in the following manner:

7T(0|D0, 040) X L(9|D0)a071'0(9|60),

where g is a scalar prior parameter that controls the effect of the historical data and ¢q is a
specified hyperparameter for the initial prior. As a result of the meaning of «y, it is reasonable
to take ap € [0,1]. Notice that if oy = 0, then the historical data has no effect and the initial
prior becomes the power prior. On the other end, if oy = 1, then the power prior corresponds
to the posterior distribution from the previous study involving Dy. To complete the power
prior specification, Ibrahim, J. and Chen, M. propose the joint power prior distribution

7T(9, a0|D0) X L(G’Do)aoﬂ'o(mCQ)ﬂ'(aO|"}/0).
They also claim a natural choice for 7(ag|yo) is a Beta distribution. To illustrate, consider
Vi = X8 + e,

where X; = (1,241, .., 25)s B = (B0, B1,- Bp) and € ¢ N(0,02). We impose the initial
prior distributions for the regressors 3 and o2 by

(3, 02) = WO(B]U2)7TO(02).

Under the modeling assumptions, we have that Y|X, 3,02 ~ N (X3, ¢2I), which specifies the
likelihood function L(B|D). Next, we research historically observed data, i.e. response vector
Y and a matrix of covariates Xy. Then, letting o be some scalar, we have the joint power
prior distribution

(8.0%1D0) x (67 exp {55 (Y~ XoB) (Yo - Xad) } ) x m(Blo?ma(o?)

Suppose that we specify the initial prior for B|o? ~ N(uo,0?R) and the initial prior for
n(0?) x 072, i.e. Jeffrey’s prior. Then, we find that the power prior under this full model



specification to be
w(8.0%100) o ((0)Fexp {505 (Yo ~ XoB) (¥ - XoB) |
< (02 exp {—212@ 0 RB o) f ()

noag+p 1

= (o)™ T exp {25 (Yo — XoB) (Yo — XoB) + (8 — o) (aoR) (B — o) | }

Define R, = agR and working with the term inside the exponential, we find
(Yo — X08) (Yo — XoB) + (8 — o) R (B — o)
=YY —28'X0'Yo + BX;XoB + 8RB — 28R, o + moR o
= B'(XoXo + R;")B - 28/ (X Yo + Ry o) + Y Yo + moR; o
= (B-w'C ' (B—p) —C u+ Y Yo+ ppRy o

where p = (X Xo + R, HX{Yo + Ry o) and C = (X[ X + R;1) 7t Therefore,

7(8,0%|Do) o (o) "4 L exp { 225 [ (Yo~ XoB) (Yo~ XoB) + (8~ o) Ry (8~ o) }
G exp{ 297 [ HB-p) - W CT I+ Y Y+ NJIOR;lHo} }
= () ep (-5 (B-w/'C B

X exp {*T‘Q [YOYO —p/C p + NSREIHO} }

= (@) Fep{-T5B-nCB-w}

G exp{ 292 [YOYO — W' C pn+ woR, Ho} }
From here, we see that the power prior distributions are

fron

2
Blo%, Dy ~ N (u, Z@C) and 02Dy ~ IG Y\ Yo — W/'Clp + ph R “OD

Another prior formulation to consider is what is called a G-prior, which is for the regression
coefficients in multiple linear regression models. The G-prior for 3 is a multivariate normal
distribution, whose covariance matrix is proportional to the Fisher information matrix for
3. Another factor attached to this covariance matrix is a positive scalar constant g, which
controls the amount of correlation structure put into the prior distribution through the Fisher
information matrix. The Fisher information matrix for the multiple linear regression above
is given by ,
X'X
(8) =5
Therefore, the G-prior for B is B|c% ~ MV N(Bo, go?(X'X)~1), where By is a hyperparameter.
To complete the prior specification for this model, one should place a prior distribution on
o2, perhaps impose that, apriori, 0% ~ IG(a/2,b/2).




()

In the code, there is a function called normal.tnvgamma. This function takes inputs of
the observed data Y, the covariates matrix X, the prior parameters of B|¢?, and the prior
parameters of o2. Therefore, for any normal-inverse gamma model, one can use this function
to model fit. It should be noted that the prior parameters for o2 are assumed to be halved,
i.e. if the prior distribution for o2 is IG(a/2,b/2), the function is looking for a, b as the prior
parameters for o2.

The simulation study consisted of only 100 data sets for the sake of time. We generated the
true data under a simulated set of covariates matrix. Then, for the historical data set, more
data was randomly generated from the same method as the simulated observed data, just
with a different sample size. We considered different values of g and g. The results of the
simulations can be found below for 3 different values of o and g.

Estimates
o, g Parameter True || Power Prior G-prior MLR
Bo 0.5 0.483 0.709  0.452
ag = 0.01 081 1 0.969 1.144  0.973
g=>5 Bo 3 3.015 2.858  3.029
o? 1 1.035 1.035  0.989
Bo 0.5 1.332 1.246  0.493
ag = 0.3 051 1 0.874 1.498  0.996
=1 Bo 3 2.607 2.499  2.999
o? 1 2.354 2.354  0.978
Bo 0.5 1.816 1.864 0.515
ag = 0.5 081 1 0.789 1.906  0.973
g=20.1 Bo 3 2.427 2.091  3.002
o? 1 3.101 3.101  0.997

The results show that as g decreases, the estimates get better. This is because we are
generating historical data from the same model, but is different than the observed data,
and decreasing «q results in the historical data set having less of an effect on the inference.
However, if the historical data set is similar to the observed data, then increasing «g results in
inference that is similar to the multiple linear regression inference. Conversely, as g increases
in value, the results get better to a certain extent. The reasoning is that under the G-prior,
we are injecting the information explained by the covariates into the model. Lastly, to obtain
better results than in the chart above, one should place a prior on g and g, and perform
updates on these as well. Consequently, placing informative priors can be beneficial if one
knows where the true parameters live. However, noninformative priors or even flat priors can
achieve very similar results with a lot less work.



Problem 2:
(a) Suppose that b ~ CAR(c?72, p); that is
b~ N (0,0°7*(D — pW) 1) .

This density takes the form of

7(b) o (o?72)72 exp{ Wb'(D - pW)b}.

We are interested in the conditional distribution b;|b(_;. Notice that

D11 — pWia —pWia —pWip
b/(D — pW)b = bf —pWar  Dag — pWag .. —pWay,
—pWhi —pWha o Dy — pWhp

[ 01(D11 — pWh) — p 3 g z1 bW

Ly ba(Daz — pWa2) = p 3 20 s Wak

_bn(Dnn - ann) - p Zk;ﬁn annk
= Z b7 (Di; — pWii) — PZ b; Z b Wi,
i=1 i=1 ki

Then, removing all the terms that do not depend on b;, and noting that W;; = 0 for all ¢,

b2 (Di; — pWii) — pb Zkazk *szkzb Wi, = b} ZWm 2pb; Zkazk

k#i k#i  j#k

where we get the equivalency by dropping all terms not dealing with b; and noting that in the
summation where j # k, we will capture more b; terms to give double the first summation
and the last summation is because W;; = 0. Thus, the conditional distribution bi|b(_i) is

P> r_ kWi 0?72 >
Zk‘ 1 Wik ’Eﬁlek '

(b) Now we find the full-conditional distributions of y|else, o~2|else, 72 |else, blelse, and b;|else.
First, we see that the joint posterior distribution is

(.6, 0%, 7Y) o (02) " exp {5 (Y — o~ BY'(Y ~ B~ b) |

x (o%7%)” 2exp{ = i 2b’(D—pW)b}

x (073 % Lexp {—07%b, } x (172)* Lexp {—7?b, } .



Therefore, we find that
1
202

= exp {—222;111 (Yz = Bo— bz‘)2}
= exp {—%iz(nﬂg — 2089 zn:(Y, — bz)) } .
i=1

From here, we have the full-conditional distribution of 8y is

(folelse) o exp {— (Y — B0~ bY(Y — fo - b)}

i=1

BolY,b,o* ~ N (zn:(y —b)/n, 02/n> .
Next, we have
m(02Jelse) o (o~2)" % L exp {—i [(Y — Bo—b) (Y — By —b) + 7 2b/(D — pW)b + bg} } .
Therefore, the full-conditional distribution for o~2 is given by

o 2|Y,b, By, 72 ~ Gamma <n + ay, by + % [(Y —Bo—b)(Y —By—b)+77b' (D — pW)b}) .

Very similarly, we have that the full-conditional for 772 is

-2
772|Y,b, By, 02 ~ Gamma, <Z + ar, by + %b’(D - pW)b> .
Now, for the full-conditional distribution of b, first see that

7(blelse) o exp {—%; [(Y —Bo—b) (Y —-By—b)+7 (D - pW)b} } .

Manipulating the term in the exponential, we find
(Y —Bo—b)(Y—Bo—b)+7?b'(D~-pW)b
= (Y = B5(Y = Bo) — 2b(Y — By) + b'Ib + 7?b'(D — pW)b
=b/(I+7 (D - pW))b—2b(Y — o).

From here, we have that the full-conditional distribution for b is

bIY, o, 0%, 7% ~ N (T4 772D = pW) (Y = o). 0*(T+ 772D — pW)) ).

Lastly, we find the full-conditional distribution of b;. Denote u; = ’)2%217%’:()’“. Then,
=1 (3

20272

m(bilelse) o exp {—2;2(}2 — By — bi)Q} exp {—m (b; — ui)z}



where W, = %2 > p—1 Wki. Working with the term in the exponential, we find that

(Yi — Bo — bi)? + Wi (b — pi)? = (Yi — Bo)* — 2bi(Yi — Bo) + b} + Wb} — 20:Wopii + Wrpsf
=21+ W,) — 2b,(Y; — Bo + W)

Therefore, the full-conditional distribution of b; is

Y; — Bo+Wrwi) o
14+ W, 1+ W,

b7,|}/;7 b(fi)a ﬁﬂv 0-2)7-2 ~ N (

(¢c) We will implement a Gibbs sampler to perform inference on the parameters of the model.
The first Gibbs sampler will update the spatial random effects simultaneously, and the second
will update them one at a time. For the first algorithm, we perform the following algorithm:

1. Initialize b(© 50 ,02(0) 7200) and set ¢ = 1.
2. Sample from the full-conditionals as follows:
(2.1) bUHD ~ blY, g7, 020, 720
(2.2) (()t+1) ~ Bo[Y,btHD) 52(0)
(2.3) o20t+1) 0—2‘Y7b(t+1)’B((]t+1)77_—2(t)
(2.4) 7720+ o 2]y B+, Bét+1)’o.—2(t+1)
3. Increment t by one and repeat step 2 for a large number of iterations.
For the second Gibbs sampler, we will update the spatial random effects one at a time. The
algorithm for this is as follows:
1. Initialize b(®) = (bgo), ey b%o)),’ Béo), o2(0) 72(0) and set ¢ = 1.

2. Sample from the full-conditionals as follows:
(t+1) bl|}/l7 (bgﬂ_l), b(t+1) b(t) (t))/’ (()t)’ O.2(t) 7.2(t)

1) For i =1,...,n, sample b, b by b ,

(2.

(2.2) B ~ By \Y b+, 20

(2.3) o —2 (t+1) 0'_2‘Y bt+D) 6 t+1 F=2(t)
( ) 20t+1) o 2|Y b+ B()H_l o —2(t+1)

3. Increment ¢ by one and repeat step 2 for a large number of iterations.



(d) We now implement the algorithms in part (c) to the observed data found below:

Observed Data
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column
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row

For both algorithms, we set p = 1. The first algorithm, which updates the spatial random
effects simultaneously has the following trace plots:
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These trace plots were constructed by throwing away the first 5000 iterates and only con-
sidered the last 5000 iterates since it appears convergence for o2 and 72 has taken place by
then. Based on the mean estimates of these estimates, we have the estimated values from the
model fitted under the full block gibbs sampler to be:

Full Block Gibbs
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20 I
-01
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row



Next, the second algorithm produces the following trace plots:

Individual gibbs

betal + b1
3

Index.

sig2

Index.

tauz

Index.

where the same stories are being told. However, the runtime for this algorithm was much
slower than the full block gibbs sampler. The estimated values for the response variable is:

Individual Gibbs
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20 A r

row



APPENDIX

HHHHEHHHF Chase Joyner
HHHHAHE 882 Homework 3

## Problem 1 ##

## Part c ##

normal .invgamma = function (Y, X, mu0, RO, a, b){

## Preliminaries ##
n = length(Y)

p = dim(X)[2]

iter = led

## Save Records ##
Beta = matrix(—99, ncol = iter , nrow = p)
Sigmasq = rep(—99, iter)

## Initial values ##
beta = rep (1, p)
sigmasq = 1

## Calculations ##
IR = solve (t(X) %% X + solve(R0))
mu = IR %% (t(X) %% Y + solve (R0) %% mu0)

for (i in 1:iter){
## Update Beta ##
beta = t(rmvnorm (1, mu, sigmasq[l] = IR))

## Update Sigmasq ##
sigmasq = rinvgamma (1,(n+p+a)/2, (1/2)x(t(Y-Xi%beta)%«%(Y-X/+«%bet:

## Save records ##
Beta[,i] = beta
Sigmasq[i] = sigmasq
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return(list (Beta = Beta, Sigmasq = Sigmasq))

## Part d ###
library (MCMCpack)

library (mvtnorm)

library (coda)

beta.true = ¢(0.5,1,3)

sigmasq.true = 1

n = 1000

eta = 500 ## historical sample size

p = length (beta.true)

X = cbind(rep(1,n), rbinom(n, 1, 0.5), rnorm(n, 2, 1))

alpha0 = 1

g = 0.1

sims = 100

Beta.power = matrix(—99, ncol = sims, nrow = p)
Sigmasq.power = rep(—99, sims)

Beta.g = matrix(—99, ncol = sims, nrow = p)
Sigmasq.g = rep(—99, sims)

Beta.mlr = matrix(—99, ncol = sims, nrow = p)

Sigmasq.mlr = rep(—99, sims)
## Power initial priors ##
mu0 = rep(2,p)
R = diag (100, p)
## G initial priors ##
betaO0 = rep(2,p)
a=>b=1
for (i in 1:sims){
Y = rnorm (n, X %% beta.true, sqrt(sigmasq.true))

## For power prior ##

#Y0 = rnorm (eta, X %% beta.true, sqrt(sigmasq.true))

#X0 = cbind(rep(1,eta), rbinom(eta, 1, 0.5), rnorm(eta, 2, 1))

YO =Y

X0 =X

C.power = solve (t(X0)%*%X0 + solve (alpha0*R))

mu. power = C.power %% (t(X0)%x%Y0 + solve (alpha0=R)%+%mu0)

cov.power = sigmasq.true / alpha0 x C.power

alpha.power = etaxalphal

beta.power = alpha0x(t(Y0)%+«%Y0—t (mu.power)%+%solve (C.power)%*%mu. power+t (1

res.power = normal.invgamma(Y,X,mu. power,cov.power,alpha.power, beta.power)
Beta.power[,i] = apply(res.power$Beta,l mean)
Sigmasq.power[i] = mean(res.power$Sigmasq)

11



## For g prior ##
mu.g = betal

cov.g = gxsigmasq.truexsolve (t(X)%x%X)
alpha.g = a

beta.g = b

res.g = normal.invgamma(Y,X,mu.g,cov.g,alpha.g,beta.g)
Beta.g[,i] = apply(res.g$Beta,1 ,mean)

Sigmasq.g[i] = mean(res.power$Sigmasq)

## Multiple Linear Regression in class ##

res.mlr = normal.invgamma(Y,X,rep(2,p),sigmasq.truexR,1,1)
Beta.mlr[,i] = apply(res.mlr$Beta,1,mean)

Sigmasq.mlr[i] = mean(res.mlr$§Sigmasq)

print (i)

}

apply (Beta.power,1 ,mean)
mean ( Sigmasq . power )
apply (Beta.g,1 ,mean)
mean ( Sigmasq.g)

apply (Beta.mlr,1 ,mean)
mean ( Sigmasq . mlr)

AR
## Problem 2 ##

## Part ¢ ###

full.gibbs = function (Y, D, W, rho, b, sig2, tau2, as2, bs2, at2, bt2,
n = length(Y)
DW =D — rho * W
I = sparseMatrix(l:n, 1l:n, x = 1)

iter = le4d,

#I = diag(n)

b.save = matrix(—99, nrow = n, ncol = iter)
sig2.save = rep(—99, n)

tau2.save = rep(—99, n)

betal.save = rep(—99, n)

for(t in 1l:iter){

12



## Sample intercept ##
beta0 = rnorm (1, mean(Y — b), sqrt(sig2 / n))

## Sample spatial random effects all at once ##

Prec = 1 + DW / tau2

CH = chol(Prec)

Rl = solve(CH, rnorm(n, 0, sqrt(sig2)), sparse = TRUE)
R2 = solve(t(CH), Y — beta0, sparse = TRUE)

R3 = solve (CH, R2, sparse = TRUE)

b = as.vector (R1 + R3)

## Sample sig2 ##

as2s = n + as2

bs2s = as.vector(bs2 + (1/2) * (sum((Y — betal0 — b)"2) + b %% DW ¢
sig2 =1 / rgamma(1l, as2s, bs2s)

## Sample tau2 ##
at2s = n / 2 + at2

bt2s = bt2 + (1/2) * (t(b) %% DW %% b / sig2)
tau2 = 1 / rgamma(l, at2s, bt2s)

H## Save F#
betal.save[t]| = betal
b.save[,t] =D
sig2.save[t] = sig2
tau2.save[t] = tau2

if (verbose = TRUE){
print (t)
P (t %% 100 = 0){
par (mfrow = ¢(3,1))
plot (betal.save [l:t])

plot (sig2.save[l:t])
plot (tau2.save[l:t])
}
¥
¥
return(list (”?sig2” = sig2.save, "tau2” = tau2.save, ”beta0” = betal.save, ’

one.gibbs = function (Y, D, W, rho, b, sig2, tau2, as2, bs2, at2, bt2, iter = led, -
n = length (Y)
DW =D — rho * W
D = diag(D)

13



b.save = matrix(—99, nrow = n, ncol = iter)
sig2.save = rep(—99, n)
tau2.save = rep(—99, n)
betal.save = rep(—99, n)

for(t in 1:iter){
## Sample intercept ##
beta0 = rnorm (1, mean(Y — b), sqrt(sig2 / n))

## Sample spatial random effects one at a time ##
for (i in 1:n){
mui = rho * W[,i] %% b / D[1i]
Wtau = D[i] / tau2

pm = as.vector ((Y[i] — beta0 + Wtau % mui) / (1 + Wtau))
ps = as.vector(sqrt(sig2 / (1 + Wtau)))
b[i] = rnorm (1, pm, ps)

}

## Sample sig2 ##

as2s = n + as2

bs2s = as.vector(bs2 + (1/2) * (sum((Y — beta0 — b)"2) + t(b) %% L
sig2 =1 / rgamma(1l, as2s, bs2s)

## Sample tau2 ##
at2s =n / 2 + at2

bt2s = bt2 + (1/2) * (t(b) %% DW %% b / sig2)
tau2 = 1 / rgamma(l, at2s, bt2s)

#H# Save ##
betal.save[t] = betal
b.save[,t] = b
sig2.save[t] = sig2
tau2.save|[t] = tau2

if (verbose = TRUE){
print (t)
(6 %% 100 = 0){
par (mfrow = ¢(3,1))
plot (betal.save[l:t])
plot (sig2.save[l:t])
plot (tau2.save[l:t])

14



return (list (" sig2” = sig2.save, "tau2” = tau2.save, ”beta0” = betal.save, ’

## Part d ###
library (lattice)

(
library (MASS)
library (Matrix)
library (mvtnorm)
library (hierarchicalDS)
P1 = 50

= 50
Y = matrix(—-99, P1, P2)
for (pl in 1:P1){

for (p2 in 1:P2){
Y[pl,p2] = 10xdnorm((pl—p2), 0, 10) 4+ rnorm (1, 0, 0.1)
}
}
levelplot (Y, main = ”Observed Data”)

W = square_adj (P1)

D = diag (rowSums(W))
Y = as.vector (Y)

n = length (Y)

load (file .choose())

resl = full.gibbs(Y=Y,D=DW=W,rho=1,b=rep(0,n),sig2=1,tau2=1,as2=0.001,bs2=0.001, a

res2 = one.gibbs (Y=Y,D=D,W=W,rho=1,b=rep(0,n),sig2=1,tau2=1,as2=0.001,bs2=0.001, at:

Yhatl = mean(res1$beta0[5000:10000]) + apply(resl$b[,5000:10000], 1, mean)
levelplot (matrix(Yhatl, ncol = P1, nrow = P2), main = ”"Full Block Gibbs”)
par (mfrow = c(4,1))

plot (res1$beta0[5000:10000])

plot (res1$sig2[5000:10000])

plot (res1$tau2[5000:10000])

plot (res1$b[1,5000:10000])

Yhat2 = mean(res2$beta0[5000:10000]) + apply(res2$b[,5000:10000], 1, mean)
levelplot (matrix (Yhat2, ncol = P1, nrow = P2), main = ”Individual Gibbs”)
par (mfrow = c(4,1))

plot (res2$beta0[5000:10000])

plot (res2%sig2[5000:10000])
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plot (res2$tau2[5000:10000])
plot (res2$b[1,5000:10000])
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